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Abstract-Explicit solutions for two-dimensional elastostatic Green's functions in general aniso­
tropic solids are obtained by the use of an integral representation technique and a subsequent
application of the residue calculus. These solutions lead naturally to the generalization of Stroh's
formalism to include the most general class of anisotropic solids.

1. INTRODUCTION

To derive analytical solutions of two-dimensional elastostatic problems in anisotropic
solids, a general solution known as Stroh's formalism is very elegant and productive (Stroh,
1962). The Green's function is one of the many solutions that can be deduced from Stroh's
formalism [see, e.g. Barnett and Lothe (1974); Ting (1992); Hwu and Yen (1991)]. Stroh's
formalism is given in terms of eigenvalues and eigenvectors. Hence it is implicit and, in its
original form, limited to solids of which the eigenvalues are all distinct. The generalization
of Stroh's formalism to include solids with non-distinct eigenvalues has been of interest to
several researchers [see Nishioka and Lothe (I 972a, b); Barnett and Lothe (1973); Lothe
and Barnett (1976); Chadwick and Smith (1977); Ting (1982); Ting and Hwu (1988);
Barnett (1992)]. In the last two references, all different cases of non-distinct eigenvalues
have been considered. All the works mentioned above are, however, direct modifications
of the original implicit form of Stroh's formalism, and are based on techniques to evaluate
the limit as different eigenvalues approach a common limit.

In this paper, explicit expressions for the Green's function are obtained for the most
general anisotropic solids. These expressions led naturally to the generalization of Stroh's
formalism. The mathematical approach is based on the use of an integral representation
technique and a subsequent application of the residue calculus. The results are obtained in
terms of the residues of poles whose positions are given by the roots of the sextic equation
of elasticity.

2. DEFINITION OF THE GREEN'S FUNCTION

Consider an unbounded homogeneous anisotropic linearly elastic solid subjected to a
static line load uniformly distributed over the x3-axis, in a fixed rectangular coordinate
system, Xi' Thus, the response fields are independent of X 3 . Denoted by 9pk(X], X2), the
Green's function corresponds to the displacement field in the xp-direction produced by the
line load in the xk-direction. Mathematically, the Green's function is defined as the solution
of the following system of partial differential equations:

CAD" D2)9p k = -t5ikt5(X)
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where ti ik is the Kronecker delta and
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The elastic constants cijpq are fully symmetric and positive definite, i.e.

Cijpq = cjipq = Cijqp = cpqij

and

(2)

(3)

(4)

for any non-zero real symmetric tensor e;)"

In this paper, a Roman suffix takes the values of 1, 2 and 3, while a Greek suffix takes
the values of 1 and 2 only. The summation convention is applied over the range of the
suffixes. In addition to suffix notations we also use bold-face letters for two-dimensional
vectors, e.g. x has components X~, and s . x = s~x~ is the inner product. The derivative with
respect to x~ is denoted by o~.

3. ILLUSTRATION OF THE SOLUTION METHOD

For a simple exposition of the method of solution we will first consider the example of
Laplace's equation. The method of solution will remain essentially the same for a general
anisotropic solid.

Thus, let us consider a function g(x) that satisfies

~g(x) = -b(x). (5)

The starting point of the derivation is the use of the following plane integral representation
for b(x):

1 i 1- ~ -log Is' xlw(s) = (j(x)
4n2 n Isl 2

where n is any closed curve enclosing the origin point s = 0 in s space, and

(6)

(7)

The proof of eqn (6) and details about the plane integral representation for arbitrary
functions can be found in texts on the Radon transform [see, e.g. John (1955); Gel'fand et
al. (1966); Wang and Achenbach (1994)].

It follows from eqn (6) that eqn (5) is satisfied by

-Ii 1g(x) = - -log Is' xlw(s).
4n2 n Isl 2

(8)
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Fig. I. Integral contour.
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In order to apply the residue calculus to eqn (8), consider the closed contour given by

(9)

shown in Fig. 1. It is easy to show that the contributions from L2 and L4 are zero as
ILll = IL3 1-+ 00, and the contribution from L 3 equals the contribution from L 1• Thus eqn
(8) reduces to

-1 i 1g(x) = - -log Is' xlw(s)
2n2

L 1 Isl 2
(10)

(11)

(12)

Evaluating eqn (12) by the residue calculus yields the residue of the pole at " = i (or
-i). The result is

-1
g(x) = 2; Re log (Xl + iX2) (13)

= ~Iog (!),
2n r (r = Ixl = Jxf+xn. (14)

Equation (14) is the well-known expression for the Green's function of Laplace's
equation. Equation (13) is a special case of the well-known general solution:

(15)

4. GENERAL SOLUTION OF THE GREEN'S FUNCTION

We now return to the Green's function defined by eqn (1). We observe that

aJ(s'x) = sJ(s'x) (16)
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where an overdot denotes the differentiation with respect to the argument. By virtue of eqn
(16), it can be shown that

(17)

where r pk 1 (s) is the inverse matrix of r,p(s) defined by

(18)

It can be shown by virtue of eqns (3) and (4) that r;p(s) is symmetric and positive definite.
Therefore r;,t (s) is well-defined. It follows from eqn (18) that riP(s) is homogeneous of
order 2, i.e. riP(as) = a2 Cp(s). Hence r; I (s) is homogeneous of order - 2.

It follows from eqns (6) and (17) that eqn (1) is satisfied by

(19)

Let the integral contour n be the same as in Section 3, indicated by eqn (9) and Fig. 1. By
virtue of the homogeneity of rpk 1 (s) it can be easily shown that the contributions from L 2

and L 4 are zero as ILl 1 = IL3 1 --+ 00, and the contribution from L 3 equals that from L).
Thus, similar to the derivation carried out in going from eqn (10) to eqn (12), we reduce
eqn (19) to

where

Apk (l1) = adj [rpk(1, 11)]

D(I1) = det[rpk (1, 11)].

(20)

(21)

(22)

(23)

We can see that D(I1) and Apk(l1) are polynomial functions of 11 of order six and four,
respectively. Since r,p(s) is positive definite, D(I1) does not have real roots. We also know
that a polynomial of order N with real coefficients has N roots, and if a +ib is a root, a - ib
must also be a root. Consequently, there are three roots satisfying

with

(24)

and we may write

(m = 1,2,3) (25)

6 3

D(I1) = L akl1k = a6 TI (11-l1m)(I1-fjm)
k~O m= 1

(26)

where tim are the conjugates of 11m and ak are the coefficients of the sextic polynomial function
D(I1). Equation (24) is called the sextic equation of elasticity (Head, 1979).

Applying the residue calculus to eqn (21) yields the summation of residues of poles at
11 = 11m (or 11 = tim). When all three 11m are distinct, the result is



where
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(27)

(28)

For certain solids, e.g. isotropic solids, poles "1m defined byeqns (24)-(25) are not all
simple. Generally, M (l ~ M ~ 3) of these three poles are distinct. Let Pm denote the
multiplicity of each pole, Le. Pm = 1, 2 and 3 for a simple, double and triple pole. Solutions
may then be generally written as

(29)

where

(30)

In eqn (30) "m = 1 when Pm = 1 and 2, "m = 0.5 when Pm = 3. By virtue of eqn (26), we
find that Dm('7m) is non-zero and finite. Clearly, eqn (27) is a special case of eqn (29) when
Pm = I for all the poles.

Note that in eqns (27) and (29), and in the sequel the following notation is used:

(31)

5. GENERAL FORMALISM

It is interesting to note that once the Green's function in the form ofeqn (29) is known,
a general solution of similar form can be easily derived. To show this, let us consider the
integral representation for a displacement field:

(32)

where cPk(Y) are arbitrary functions with a compact support S in the two-dimensional space
R2

• It is known that eqn (32) yields the general form for a displacement field which satisfies

(33)

Now, substitute eqn (29) into eqn (32) and set

(34)

We obtain

(35)

It can be shown that the complex form:
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(36)

also satisfies eqn (33). In this respect, eqn (36) defines the general solution. When Pm = 1
for all 11m, eqn (36) is the explicit form for the conventional Stroh's formalism.

6. DETAILS AND DISCUSSIONS

In this section we give some details of eqn (29) in the case of multiple poles. Since the
case of a double pole is similar to the case of a triple pole, only the latter is discussed.

For a triple pole 111> M = 1 and P j = 3, and eqn (29) yields

(37)

where

(38)

According to eqns (26) and (30), we have

(39)

We note that eqn (37) is quite different from eqn (27) (the case of simple poles), unless

(40)

When the sextic equation of elasticity, eqn (24), has multiple roots, we say that (for
the direction x 3 ) the solid is degenerate. In the modified implicit Stroh's eigenvalue for­
malism (Ting and Hwu, 1988; Barnett, 1992), degenerate solids are further separated into
semisimple and non-semisimple solids. For semisimple solids, the conventional Stroh's
formalism need not be modified. It can be shown that when eqn (40) holds the solids are
semisimple. Otherwise, they are non-semisimple.

It is worth noting that isotropic solids belong to the class of materials for which

(41)

Here we raise the question: does !lpk(111) = 0 always holds when 111 is a triple root of eqn
(24)? So far no contradictions have been found in the literature (e.g. Ting, 1982), but the
issue is yet to be resolved mathematically.
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